
A Tactic Language for Hiproofs

David Aspinall1, Ewen Denney2, and Christoph Lüth3

1 LFCS, School of Informatics
University of Edinburgh

Edinburgh EH9 3JZ, Scotland
2 RIACS, NASA Ames Research Center

Moffett Field, CA 94035, USA
3 Deutsches Forschungszentrum für Künstliche Intelligenz

Bremen, Germany

Abstract. We introduce and study a tactic language, Hitac, for con-
structing hierarchical proofs, known as hiproofs. The idea of hiproofs is
to superimpose a labelled hierarchical nesting on an ordinary proof tree.
The labels and nesting are used to describe the organisation of the proof,
typically relating to its construction process. This can be useful for un-
derstanding and navigating the proof. Tactics in our language construct
hiproof structure together with an underlying proof tree. We provide
both a big-step and a small-step operational semantics for evaluating
tactic expressions. The big-step semantics captures the intended mean-
ing, whereas the small-step semantics hints at possible implementations
and provides a unified notion of proof state. We prove that these notions
are equivalent and construct valid proofs.

1 Introduction

Interactive theorem proving is a challenging pursuit, made additionally chal-
lenging by the present state-of-the-art. Constructing significant sized computer
checked proofs requires struggling with incomplete and partial automation, and
grappling with many low-level system specific details. Once they have been writ-
ten, understanding and maintaining such proofs is in some ways even harder:
small changes often cause proofs to break completely, and debugging to find the
failure point is seldom easy.

Moreover, notions of proof vary from one theorem prover to another, locking
users into specific provers they have mastered. What is needed is a more abstract
notion of proof which is independent of a particular prover or logic, but supports
the relevant notions needed to interactively explore and construct proofs, thus
improving the management of large proofs. In this paper, we study the notion
of hiproof [1], which takes the hierarchical structure of proofs as primary, and
provides operations such as zooming to examine detail. We examine how to
construct proofs using tactics at this abstract level.

3 Draft Rev. 1.121 of 2008/03/16 16:30:14

Figure 1 shows three example hiproofs which illustrate the basic ideas. Di-
agram (a) shows the structure of an induction procedure: it consists of the ap-
plication of an induction rule, followed by a procedure for solving the base case
and a procedure for solving the step case. The step case uses rewriting and
the induction hypothesis to complete the proof. Diagram (b) shows a procedure
for solving a positive propositional statement, using implication and then con-
junction introduction, solving one subgoal using an axiom and leaving another
subgoal unsolved, indicated by an arrow exiting the “Prop” box. The second
subgoal is then solved using reflexivity. Diagram (c) shows two labelled hiproofs
labelled l and m, respectively. l applies rule a, which produces two subgoals, the
first of which is solved inside l with b, and the second of which is solved by the
proof labelled m (consisting of a single rule c). We will use this third example
as a test case later.

(a) (b) (c)

Fig. 1. Example Hiproofs

A hiproof is abstract: nodes are given names corresponding to basic proof
rules, procedures or compositions thereof. Each node may be labelled with a
name: navigation in the proof allows “zooming in” by opening boxes to reveal
their content. Boxes which are not open are just visualised with their labels;
details inside are suppressed. Hiproofs are an abstraction of a proof in an un-
derlying logic or derivation system; we call a hiproof valid if it can be mapped
on to an underlying proof tree, where nodes are given by derivable judgements.

The central topic, and novelty, introduced in this paper is a tactic program-
ming language for constructing valid hiproofs. The language is general and not
tied to a specific system. It is deliberately restrictive: at the moment we seek
to understand the connection between hierarchical structure and some core con-
structs for tactic programming, namely, alternation, repetition and assertion;
features such as meta-variable instantiation and binding are left to future work.
Part of the value of our contribution is the semantically precise understanding
of this core.

2

Outline. The next section introduces a syntax for hiproofs and explains the no-
tion of validity. By extending this syntax we introduce tactics which can be used
to construct programs. In Section 3 we study notions of evaluation: a tactic can
be applied to a goal and, if successful, evaluated to produce a valid hiproof. We
consider two operational semantics: a big-step relation which defines the mean-
ing of our constructs, and a finer-grained small-step semantics with a notion of
proof state that evolves while the proof is constructed. In Section 4 we demon-
strate how our language can be used to define some familiar tactics. Section 5
concludes and relates our contribution to previous work.

2 Syntax for hiproofs and tactics

Hiproofs add structure to an underlying derivation system, introduced shortly.
Hiproofs are ranged over by s and are given by terms in the grammar:

s ::= a atomic
id identity
[l] s labelling
s ; s sequencing
s ⊗ s tensor
〈〉 empty

We assume a ∈ A where A is the set of atomic tactics given by the underly-
ing derivation system. The remaining constructors add the structure introduced
above: labelling introduces named boxes; sequencing composes one hiproof af-
ter another, and tensor puts two hiproofs side-by-side, operating on two groups
of goals. The identity hiproof has no effect, but is used for “wiring”, to fill in
structure. It can be applied to a single (atomic) goal. The empty hiproof is the
vacuous proof for an empty set of goals. Hiproofs have a denotational semantics
given in previous work [1]; the syntax above serves as an internal language for
models in that semantics. The denotational semantics justifies certain equations
between terms, in particular, empty is a unit for the tensor, and tensor and
sequencing are associative.

When writing hiproof terms we use the following syntactic conventions: the
scope of the label l in [l] s extends as far as possible and tensor binds more tightly
that sequencing.

Example 1. The hiproof in Fig. 1(c) is written as

([l] a ; b ⊗ id) ; [m] c.

Notice the role of id corresponding to the line exiting the box labelled l.

The underlying derivation system defines sets of atomic tactics a ∈ A and
atomic goals γ ∈ G. Typically, what we call a goal is given by a judgement form

3

γ1 · · · γn

γ aγ ∈ A

a ` γ −→ γ1 ⊗ · · · ⊗ γn

(V-Atomic)

id ` γ −→ γ (V-Identity)

s ` γ −→ g

[l] s ` γ −→ g
(V-Label)

s1 ` g1 −→ g s2 ` g −→ g2

s1 ; s2 ` g1 −→ g2

(V-Sequence)

s1 ` g1 −→ g′
1 s2 ` g2 −→ g′

2

s1 ⊗ s2 ` g1 ⊗ g2 −→ g′
1 ⊗ g′

2

(V-Tensor)

〈〉 ` 〈〉 −→ 〈〉 (V-Empty)

Fig. 2. Validation of Hiproofs

in the underlying derivation system. We work with lists of goals g written using
the binary tensor:

g ::= γ g ⊗ g 〈〉
The tensor is associative and unary, with 〈〉 the unit (empty list). We write g : n
to indicate the length of g, i.e., when g = γ1 ⊗ · · · ⊗ γn or g = 〈〉 for n = 0,
called the arity. Elementary inference rules in the underlying derivation system
can be seen as atomic tactics of the following form:

γ1 · · · γn

γ a

which given goals γ1, . . . , γn produce a proof for γ. There are, of course, other
atomic tactics possible. However, for a particular atomic tactic a, there may be
a family of goals γ to which it applies; we write aγ to make the instance of a
precise. A restriction is that every instance of a must have the same arity, i.e.,
number of premises n. By composing atomic tactics, we can produce proofs in
the derivation system. Thus, each hiproof s has a family of underlying proofs
which consist of applications of the instances of the underlying atomic tactics.
We say that s validates proofs from g2 to g1, written s ` g1 −→ g2. Validation
is defined by the rules in Fig. 2.
Validation is a well-formedness check: it checks that atomic tactics are applied
properly to construct a proof, and that the structural regime of hiproofs is
obeyed. Notice that, although g1 and g2 are not determined by s, the arity re-
striction means that every underlying proof that s validates must have the same
shape, i.e., the same underlying tree of atomic tactics. This underlying tree is
known as the skeleton of the hiproof [1]. The (input) arity s : n of a hiproof s
with s ` g1 −→ g2 is n where g1 : n; note that again by the restriction on
atomic tactics, a hiproof has a unique arity, if it has any.

4

Example 2. Suppose we have a goal γ1 which can be proved like this:

γ2
b γ3

c

γ1
a

Then ([l] a ; b ⊗ id) ; [m] c ` γ1 −→ 〈〉.

To show how the abstract hiproofs may be used with a real underlying deriva-
tion system, we give two small examples with different sorts of underlying goals.

Example 3. Minimal propositional logic MPL has the formulae:

P ::= TT FF X P =⇒ P

where X is a propositional variable. Goals in MPL have the form Γ ` P , where Γ
is a set of propositions. The atomic tactics correspond to the natural deduction
rules:

Γ, P ` P
ax

Γ ∪ {P} ` Q

Γ ` P =⇒ Q
impI

Γ ` P =⇒ Q Γ ` P

Γ ` Q
impE

Γ ` P

Γ ∪ {Q} ` P
wk

Rules in this system give a derivation system for our hiproof language. Atomic
tactics are rule instances (e.g., ax{X}`X), which are viewed as being applied
backwards to solve some given atomic goal; they have the obvious arities.

Example 4. Minimal equational logic MEL is specified by a signature Σ, giving
a set of terms TΣ(X) over a countably infinite set of variables X, together
with a set of equations E of the form a = b with a, b terms. Goals in this
derivation system are equations of the same form. These can be established
using the following atomic tactics (where a, b, c, d ∈ TΣ(X)):

a = a
refl

a = b b = c

a = c
trans

a = b

b = a
sym

a = b c = d

a[c/x] = b[d/x]
subst

Here, a[c/x] denotes the term a with the variable x replaced by term c through-
out. For example, the more usual substitutivity rule

a = b

a[c/x] = b[c/x]
subst′

can be derived with the hiproof h1 = subst ; id ⊗ refl , whereas the usual
congruence rule say for a binary operation f

a1 = b1 a2 = b2

f(a1, a2) = f(b1, b2)
ctxt

can be derived with the hiproof h2 = subst ; (subst ; refl ⊗ id) ⊗ id.

5

2.1 Tactics and programs

The hiproofs introduced above are static proof structures which represent the
result of executing a tactic. We now present a language of tactics which can be
evaluated to construct such hiproofs. These tactic expressions will be the main
object of study. They are defined by extending the grammar for hiproofs with
three new cases:

t ::= a id [l] t t ; t t ⊗ t 〈〉 as for hiproofs
t | t alternation
assert γ goal assertion
T defined tactic

Together the three new cases allow proof search: alternation allows alternatives,
assertion allows controlling the control flow, and defined tactics allow us to build
up a program of possibly mutually recursive definitions. Syntactic conventions for
hiproofs are extended to tactic expressions, with alternation having precedence
between sequencing (lowest) and tensor (highest). Alternation is also associative.
Further, the arity t : n of a tactic is defined as follows: for a hiproof s, it has
been defined above; [l] t : 1; if t1 : n, then t1 ; t2 : n; if t1 : n and t2 : m,
then t1 ⊗ t2 : n + m; if t1 : n and t2 : n, then t1 | t2 : n; assert γ : 1; and if

T
def
= t ∈ Prog and t : n, then T : n. This definition is partial, not all tactics can

be given an arity.

Programs. A tactic program Prog is a set of definitions of the form Ti
def
= ti,

together with a goal matching relation on atomic goals γ . γ′ which is used
to define the meaning of the assertion expression. The definition set must not
define any T more than once, and no label may appear more than once in all of
the definition bodies ti.

The uniqueness requirement on labels is so that we can map a label in a
hiproof back to a unique origin within the program – although notice that,
because of recursion, the same label may appear many times on the derivation.

We do not make restrictions on the goal matching relation. In some cases it
may simply be an equivalence relation on goals. For MEL, a pre-order is more
natural: the matching relation can be given by instantiations of variables, so
a goal given by an equation b1 = b2 matches a goal a1 = a2 if there is an
instantiation σ : X → TΣ(X) such that bi = aiσ.

Example 5. We can give a tactic program for producing the hiproof shown in
Fig. 1(c) by defining:

Tl
def
= [l] a ; b ⊗ id

Tm
def
= [m] c

Tu
def
= (assert γ3 ; Tm) | (Tl ; Tu)

If we evaluate the tactic Tu applied to the goal γ1, we get the hiproof shown
earlier, ([l] a ; b ⊗ id) ; [m] c, with no left over goals.

6

The next section provides an operational semantics to define a notion of evalu-
ation that has this effect.

3 Operational semantics

To give a semantics to tactic expressions, we will consider an operational seman-
tics as primary. This is in contrast to other approaches which model things as the
original LCF-style tactic programming does, i.e., using a fixed-point semantics to
explain recursion (e.g., ArcAngel [2]). We believe that an operational semantics
is more desirable at this level, because we want to explain the steps used during
tactic evaluation at an intensional level: this gives us a precise understanding of
the internal proof state notion, and hope for providing better debugging tools
(a similar motivation was given for Tinycals [3]).

There is a crucial difference between hiproofs and tactic expressions. Because
of alternation and repetition, tactic evaluation is non-deterministic: a tactic ex-
pression can evaluate to many different hiproofs, each of which can validate
different proofs, so we cannot extend the validity notion directly, even for (stat-
ically) checking arities – which is why our notion of arity is partial. This is not
surprising because part of the point of tactic programming is to write tactics that
can apply to varying numbers of subgoals using arbitrary recursive functions. It
is one of the things that makes tactic programming difficult. In future work we
plan to investigate richer static type systems for tactic programming, in the belief
that there is a useful intermediate ground between ordinary unchecked tactics
and what could be called “certified tactic programming” [4, 5], where tactics are
shown to construct correct proofs using dependent typing.

Here, we use untyped tactic terms, as is more usual. We begin by defining
a big-step semantics that gives meaning to expressions without explicitly speci-
fying the intermediate states. In Sect. 3.2 we give a small-step semantics which
provides a notion of intermediate proof state.

3.1 Big-step semantics

The big-step semantics is shown in Fig. 3. It defines a relation 〈g, t〉 ⇓ 〈s, g′〉
inductively, which explains how applying a tactic t to the list of goals g results
in the hiproof s and the remaining (unsolved) goals g′. A tactic t proves a goal,
g, therefore, if 〈g, t〉 ⇓ 〈s, 〈〉〉, for some hiproof s. The relation is defined for a
given program Prog .
The rules directly capture the intended meaning of tactic expressions. For ex-
ample, (B-Label) evaluates a labelled tactic expression [l] t, by first evaluating
the body t using the same goal γ, to get a hiproof s and remaining goals g. The
result is then the labelled hiproof [l] s and remaining goals g. Like (V-Label), this
rule reflects key restrictions in the notion of hiproof (motivated in [1]), namely
that a box has a unique entry point, its root, which accepts a single (atomic)
goal.

7

γ1 · · · γn

γ aγ ∈ A

〈γ, a〉 ⇓
〈a, γ1 ⊗ · · · ⊗ γn〉

(B-Atomic)

〈γ, id〉 ⇓ 〈id, γ〉
(B-Id)

〈γ, t〉 ⇓ 〈s, g〉
〈γ, [l] t〉 ⇓ 〈[l] s, g〉

(B-Label)

〈g1, t1〉 ⇓ 〈s1, g2〉
〈g2, t2〉 ⇓ 〈s2, g3〉

〈g1, t1 ; t2〉 ⇓ 〈s1 ; s2, g3〉
(B-Seq)

〈g1, t1〉 ⇓ 〈s1, g
′
1〉

〈g2, t2〉 ⇓ 〈s2, g
′
2〉

〈g1 ⊗ g2, t1 ⊗ t2〉 ⇓
〈s1 ⊗ s2, g

′
1 ⊗ g′

2〉

(B-Tensor)

〈〈〉, 〈〉〉 ⇓ 〈〈〉, 〈〉〉 (B-Empty)

〈g, t1〉 ⇓ 〈s, g′〉
〈g, t1 | t2〉 ⇓ 〈s, g′〉

(B-Alt-L)

〈g, t2〉 ⇓ 〈s, g′〉
〈g, t1 | t2〉 ⇓ 〈s, g′〉

(B-Alt-R)

γ . γ′

〈γ′, assert γ〉 ⇓ 〈id, γ′〉
(B-Assert)

T
def
= t ∈ Prog

〈g, t〉 ⇓ 〈s, g′〉
〈g, T 〉 ⇓ 〈s, g′〉

(B-Def)

Fig. 3. Big-step semantics for Hitac

Notice that in (B-Assert), assertion terms evaluate to identity if the goal
matches, or they do not evaluate at all. Similarly, (B-Atomic) only allows an
atomic tactic a to evaluate if it can be used to validate the given goal γ. Hence,
failure is modelled implicitly by the lack of a target for the overall evaluation
(i.e., there must be some subterm 〈g, t〉 for which there is no 〈s, g′〉 it evaluates
to). The rules for alternation allow an angelic choice, as they allow us to pick
the one of the two tactics which evaluate to a hiproof (if either of them does); if
both alternatives evaluate, the alternation is non-determistic.

While the obvious source of non-determinism is alternation, the tensor rule
also allows the (possibly angelic) splitting of an input goal list into two halves
g1 ⊗ g2, including the possibility that g1 or g2 is the empty tensor 〈〉.

The crucial property is correctness of the semantics: if a hiproof is produced,
it is a valid hiproof for the claimed input and output goals.

Theorem 1 (Correctness of big-step semantics).
If 〈g, t〉 ⇓ 〈s, g′〉 then s ` g −→ g′.

Proof. By induction on the derivation of 〈g, t〉 ⇓ 〈s, g′〉.

Fact 1 (Label origin) If t is label-free, 〈g, t〉 ⇓ 〈s, g′〉 and the label l appears
in s, then l has a unique origin within some tactic definition x from Prog.

The label origin property is immediate by the definition of program and the
observation that evaluation only introduces labels from the program. It means
that we can use labels as indexes into the program to find where a subproof was
produced, which is the core motivation for labelling, and allows a source level
debugging of tactical proofs.

8

3.2 Small-step semantics

Besides the big-step semantics given above, it is desirable to explain tactic eval-
uation using a small-step semantics. The typical reason for providing small-step
semantics is to give meaning to non-terminating expressions. In principle we
don’t need to do this here (non-terminating tactics do not produce proofs), but
in practice we are interested in debugging tactic expressions during their evalu-
ation, including ones which may fail. A small step-semantics provides a notion
of intermediate state which helps do this.

We now define an evaluation machine which evolves a proof state config-
uration in each step, eventually producing a hiproof. The reduction is again
non-deterministic; some paths may get stuck or not terminate. Compared with
the big-step semantics, the non-determinism in alternation does not need to
be predicted wholly in advance, but the rules allow exploring both alternation
branches of a tactic tree in parallel to find one which results in a proof.

Formulation of a small-step semantics is not as straightforward as the big-step
semantics, because it needs to keep track of the intermediate stages of evaluation,
which do not correspond to a well-formed hiproof. The difficulty is in recording
which tactics have been evaluated and which not, and moving the goals which
remain in subtrees out of their hierarchical boxes. It was surprisingly hard to find
an elegant solution. The mechanism we eventually found is pleasantly simple;
it was devised by visualising goals moving in the geometric representation of
hiproofs; they move along lines, in and out of boxes, and are split when entering
a tensor and rejoined afterwards.

This suggests a unified notion of proof state, where goals appear directly in
the syntax with tactics. To this end, we define a compound term syntax for proof
states which has hiproofs, tactic expressions and goal lists as sublanguages:

p ::= a id [l] p p ; p p ⊗ p p | p assert γ T g

The general judgement form is p ⇒ p′, defined by the rules shown in Fig. 4.
A proof state, p, consists of a mixture of open goals, g, active tactics, t, and
successfully applied tactics, i.e., hiproofs, s. Composing proof states can be un-
derstood as connecting, or applying, the tactics of one state to the open goals
of another. In particular, the application of tactic t to goal g has the form g ; t,
and we treat the sequencing operator on proof states as associative. The notion
of value is a fully reduced proof state with the form s ; g′. A complete reduction,
therefore, has the form:

g ; t ⇒∗ s ; g′.

What happens is that the goals g move through the tactic t, being transformed by
atomic tactics, until (if successful) the result is a simple hiproof s and remaining
goals g′. Note that not all terms in this grammar are meaningful. In the rules,
therefore, we will restrict attention to reductions of a meaningful form, and are
careful to distinguish between syntactic categories for proof states, p, and the
sublanguages of tactics t, hiproofs s and goals g, which can be embedded into the
language of proof states. For example, in the rule (S-Alt), g has to be a goal and

9

γ1 · · · γn

γ aγ ∈ A

γ ; a ⇒
a ; γ1 · · · ⊗ · · · γn

(S-Atomic)

γ ; id ⇒ id ; γ (S-Id)

γ ; [l] t ⇒ [l] γ ; t (S-Enter)

[l] s ; g ⇒ ([l] s) ; g (S-Exit)

g1 ⊗ g2 ; p1 ⊗ p2 ⇒
(g1 ; p1) ⊗ (g2 ; p2)

(S-Split)

(s1 ; g1) ⊗ (s2 ; g2) ⇒
s1 ⊗ s2 ; g1 ⊗ g2

(S-Join)

g ; t1 | t2 ⇒
(g ; t1) | (g ; t2)

(S-Alt)

(s1 ; g) | p2 ⇒ s1 ; g (S-Sel-L)

p1 | (s2 ; g) ⇒ s2 ; g (S-Sel-R)

γ . γ′

γ ; assert γ′ ⇒ id ; γ
(S-Assert)

T
def
= t ∈ Prog

g ; T ⇒ g ; t
(S-Def)

p ⇒ p′

[l] p ⇒ [l] p′ (S-Lab)

p1 ⇒ p′
1

p1 ; p2 ⇒ p′
1 ; p2

(S-Seq-L)

p2 ⇒ p′
2

p1 ; p2 ⇒ p1 ; p′
2

(S-Seq-R)

p1 ⇒ p′
1

p1 ⊗ p2 ⇒ p′
1 ⊗ p2

(S-Tens-L)

p2 ⇒ p′
2

p1 ⊗ p2 ⇒ p1 ⊗ p′
2

(S-Tens-R)

p1 ⇒ p′
1

p1 | p2 ⇒ p′
1 | p2

(S-Alt-L)

p2 ⇒ p′
2

p1 | p2 ⇒ p1 | p′
2

(S-Alt-R)

Fig. 4. Small-step semantics for Hitac

t1, t2 must be tactics. Further, note that the empty goal and the empty hiproof
and tactic are both denoted by 〈〉; this gives rise to the identity 〈〉 ; 〈〉 = 〈〉 ; 〈〉
where on the left we have a tactic applied to an empty goal, and on the right a
hiproof applied to an empty goal. The small-step semantics therefore does not
need an explicit rule for the empty case.

The appearance of constrained subterms, and in particular, value forms s ; g,
restricts the reduction relation and hints at evaluation order. Intuitively, join-
ing tensors in (S-Join) only takes place after a sub-proof state has been fully
evaluated. Similarly, in (S-Exit), when evaluation is complete inside a box, the
remaining goals are passed out on to subsequent tactics. Alternatives need only
be discarded in (S-Sel-L) or (S-Sel-R) after a successful proof has been found.

The theorems below show that restrictions do not limit the language, by
relating it to the big-step semantics.

Example 6. Consider the tactic program from Ex. 5. We show the reduction of
Tu applied to the goal γ1. The steps name the major rule applied at each point.

γ1 ; Tu ⇒
⇒ γ1 ; (assert γ3 ; Tm) | (Tl ; Tu) (S-Def)
⇒ (γ1 ; assert γ3 ; Tm) | (γ1 ; Tl ; Tu) (S-Alt)
⇒ . . . γ1 ; ([l] b ; c ⊗ id) ; Tu reduce on right, (S-Def)

10

⇒ . . . ([l] γ1 ; b ; c ⊗ id) ; Tu (S-Enter)
⇒ . . . ([l] b ; γ2 ⊗ γ3 ; c ⊗ id) ; Tu (S-Atomic)
⇒ . . . ([l] b ; (γ2 ; c) ⊗ (γ3 ; id)) ; Tu (S-Split)
⇒ . . . ([l] b ; (c ; 〈〉) ⊗ (γ3 ; id)) ; Tu (S-Atomic)
⇒ . . . ([l] b ; (c ; 〈〉) ⊗ (id ; γ3)) ; Tu (S-Id)
⇒ . . . ([l] b ; (c ⊗ id) ; γ3) ; Tu (S-Join), 〈〉 ⊗ γ3 ≡ γ3

⇒ . . . ([l] b ; c ⊗ id) ; γ3 ; Tu (S-Exit)
⇒ . . . ([l] b ; c ⊗ id) ; γ3

; (assert γ3 ; Tm) | (Tl ; Tu) (S-Def)
⇒ . . . ; (γ3 ; assert γ3 ; Tm) | (γ3 ; Tl ; Tu) (S-Alt)
⇒ . . . ; (γ3 ; Tm) | (γ3 ; Tl ; Tu) (S-Assert)
⇒ . . . ; (γ3 ; [m] c) | (γ3 ; Tl ; Tu) (S-Def)
⇒ . . . ; ([m] γ3 ; c) | (γ3 ; Tl ; Tu) (S-Enter)
⇒ . . . ; ([m] c ; 〈〉) | (γ3 ; Tl ; Tu) (S-Atomic)
⇒ . . . ; ([m] c) ; 〈〉 | (γ3 ; Tl ; Tu) (S-Exit)
⇒ . . . ([l] b ; c ⊗ id) ; ([m] c) ; 〈〉 (S-Sel-L)
⇒ ([l] b ; c ⊗ id) ; ([m] c) ; 〈〉 (S-Sel-R)

The final value is as claimed in Ex. 5.

Our main result is that the two semantics we have given coincide. This shows
that the small-step semantics is indeed an accurate way to step through the
evaluation of tactic expressions.

Theorem 2 (Completeness of small-step semantics). If 〈g, t〉 ⇓ 〈s, g′〉,
then g ; t ⇒∗ s ; g′

Proof. Straightforward induction on big-step derivation.

Theorem 3 (Soundness of small-step semantics). If g ; t ⇒∗ s ; g′ then
〈g, t〉 ⇓ 〈s, g′〉.
Proof. By induction on the length of the derivation, using Lemma 1.

Lemma 1 (Structure preservation).

1. If [l] p ⇒∗ s ; g then for some s′, s = [l] s′ and there exists a reduction
p ⇒∗ s′ ; g with strictly shorter length.

2. If p1 ⊗ p2 ⇒∗ s ; g and p1, p2 6= 〈〉, then for some s1, s2, g1 and g2, we
have s = s1 ⊗ s2 and g = g1 ⊗ g2 and there exist reductions pi ⇒∗ si ; gi

with strictly shorter lengths.
3. If p ; t ⇒∗ s ; g where p is not a goal, then for some s1, s2, g1, s = s1 ; s2

and there exist reductions p ⇒∗ s1 ; g1, g1 ; t ⇒∗ s2 ; g with strictly
shorter length.

4. If p1 | p2 ⇒∗ s ; g then there exists a strictly shorter reduction of p1 ⇒∗

s ; g or of p2 ⇒∗ s ; g.

Proof. Each part by induction on the lengths of sequences involved. For each
constructor, a major rule is the base case and congruence rules are step cases.

Theorems 1 and 3 give correctness also for the small step semantics.

Corollary 1 (Correctness of small-step semantics). If g ; t ⇒∗ s ; g′

then s ` g −→ g′.

11

4 Tactic Programming

Tactics as above are procedures which produce hiproofs. To help with writing
tactics, most theorem provers provide tacticals (tactic functionals or higher-order
tactics), which combine existing tactics into new ones. The simplest examples
of tacticals are the alternation and sequencing operations for tactics. Theorem
provers like the original LCF, Isabelle, HOL or Coq provide more advanced
patterns of applications; we concentrate on two illustrative cases here.

We will write tacticals as a meta-level notion, i.e., the following equations
are meant as short-cuts defining one tactic for each argument tactic t:

ALL t
def
= (t ⊗ ALL t) | 〈〉

ID
def
= ALL id

REPEAT t
def
= (t ; REPEAT t) | ID

ALL t applies t to as many atomic goals as available; in particular, ID is the
‘polymorphic identity’, which applied to any goal g : n reduces to idn, the n-fold
tensor of id. REPEAT t applies t as often as possible. An application of this is a
tactic to strip away all implications in the logic MPL (Example 3), defined as

stripImp
def
= REPEAT impI. To see this at work, here it is used in an actual proof:

` A =⇒ (B =⇒ A) ; stripImp ⇒ ` A =⇒ (B =⇒ A) ; (impI ; REPEAT impI) | ID
⇒∗ ({A} ` B =⇒ A ; REPEAT impI) | (` A =⇒ (B =⇒ A) ; ID)
⇒∗ (id ; {A,B} ` A) | . . . | . . .
⇒∗ id ; {A,B} ` A

The last goal is easily proven with the atomic tactic ax.

4.1 Deterministic semantics

The big- and small-step semantics given above are non-deterministic: a tactic
t applied to a goal g may evaluate to more than one hiproof s (and remaining
goals g′). This may result in many ‘unwanted’ reductions along with successful
ones; e.g., REPEAT t ; g can always reduce to id ; g. Non-determinism has its
advantages: the tensor splitting allows a tactic such as ALL b ⊗ ALL c to solve
the goal γ2 ⊗ γ2 ⊗ γ3 by splitting the tensor judiciously: γ2 ⊗ γ2 ⊗ γ3 ; ALL b ⊗
ALL c ⇒ (γ2 ⊗ γ2 ; ALL b) ⊗ (γ3 ; ALL c). However, this behaviour is hard to
implement (it requires keeping track of all possible reductions, and selecting the
right ones after the fact), and it is in marked contrast to the usual alternation
tactical (ORELSE in the LCF family) which always selects the first alternative if
it is successful, and the second otherwise.

To give a deterministic behaviour for our language, we can define a restricted
small-step semantics, which includes a strict subset of the reductions of the
non-deterministic one. Since the principal sources of non-determinism are the
alternation and the tensor splitting rules, the deterministic small-step semantics

12

has the same rules as the small-step semantics from Sect. 3.2, but replaces rules
(S-Sel-L), (S-Sel-R) and (S-Split) with the following:

(s1 ; g) | p2 ⇒D s1 ; g (TSD-Alt-L)

p1 6⇒D s1;h
p1 | (s2 ; g) ⇒D s2 ; g

(TSD-Alt-R)

g1 : n t1 : n

g1 ⊗ g2 ; t1 ⊗ t2 ⇒D (g1 ; t1) ⊗ (g2 ; t2)
(TSD-Split)

The right alternative is only chosen if the left alternative does not evaluate to
any hiproof. Further, we only allow the argument goals to be split if the first
component of the tactic has a fixed arity. This means that in the above example,
γ2 ⊗ γ2 ⊗ γ3 ; ALL b ⊗ ALL c does not reduce; to prove that goal under
deterministic reduction, we need the tactic ALL (b | c).

Theorem 4 (Deterministic small-step semantics). The deterministic se-
mantics is a restriction of the non-deterministic one:

if t ; g ⇒∗
D s ; g then t ; g ⇒∗ s ; g

Proof. A simple induction on the derivation of ⇒∗
D . The rules (TSD-Alt-L),

(TSD-Alt-R) and (TSD-Split) are admissible in the non-deterministic small-step
semantics.

Corollary 2. (Soundness of the deterministic semantics) If g ; t ⇒∗
D s ; g,

then 〈g, t〉 ⇓ 〈s, g′〉.

Theorem 4 implies that the deterministic semantics is weaker. In fact, it
suffices for our simple example tacticals but some others (e.g., violating the
arity restriction) are not covered. To recover more of the expressivity of the non-
deterministic semantics, one could introduce a notion of backtracking, and treat
the tensor split in a demand driven way to avoid the restriction of fixed arity.
However, these extensions are beyond the scope of the present paper.

5 Related work and conclusions

This paper introduced a tactic language, Hitac, for constructing hierarchical
proofs. We believe that hierarchical proofs offer the chance for better manage-
ment of formal proofs, in particular, by making a connection between proofs and
procedural methods of constructing them.

Our work with hierarchical structure in the form of hiproofs is unique, al-
though there are many related developments on tactic language semantics and
structured proofs elsewhere. A full survey is beyond our scope (more references
can be found in [1]), but we highlight some recent and more closely connected
developments.

Traditional LCF-style tactic programming uses a full-blown programming
language for defining new tactics, as is also done in the modern HOL systems.

13

The direct way of understanding such tactics is as the functions they define over
proof states, suggesting a denotational fixed point semantics such as studied by
Oliveira et al. [2]. Coq offers the power of OCaml for tactic programming, but
also provides a cut-down functional language for writing tactics, Ltac, designed
by Delahaye [6]. This has the advantage of embedding directly in the Coq proof
language, and offers powerful matching on the proof context. However, Delahaye
did not formalise an evaluation semantics or describe a tactic tracing mechanism.

Kirchner [7] appears to have been the first to consider formally describing
a small-step semantics for tactic evaluation, impressively attempting to capture
the behaviour of both Coq and PVS within a similar semantic framework. He
defines a judgement e/τ → e′/τ ′, which operates on a tactic expression e and
proof context τ , to produce a simpler expression and updated context. So, unlike
our simpler validation-based scheme, state based side-effecting of a whole proof
is possible. However, the reduction notion is very general and the definitions for
Coq and PVS are completely system-specific using semantically defined opera-
tions on proof contexts; there is a big gulf between providing these definitions
and proving them correct.

Tinycals [3] is a recent small-step tactic language, implemented in the Matita
system. The main motivation is to allow stepping inside tactics in order to extend
Proof General-like interaction. In Coq and other systems of which we are aware,
single-stepping defined tactics using their source is not possible, at best they
can be traced by interrupting the tactic engine after a step and displaying the
current state. Tinycals allows tracing linked back to the tactic expression, also
showing the user information about remaining goals and backtracking points.
The Tinycals language allows nested proof structure to be expressed in tactics,
like hiproofs, and is also reminiscent of Isabelle’s declarative proof language
Isar [8], but there is no naming for the nested structure in either case.

One system that bears a closer structural resemblance to the hiproof notion
is NuPrl’s tactic tree [9], which extends LCF-style tactics by connecting them to
proof trees, as would be done by combining our big-step semantics with the vali-
dation check which links a hiproof to an underlying tree. NuPrl allows navigating
the tree and expanding or replacing tactics at each node.

Future work. Work still remains to fully describe the formal properties of the
calculus and its extensions, including type systems for arity checking as hinted at
in Sect. 3, and further deterministic evaluation relations. One important result
for the small-step semantics is to characterise the normal forms. This requires a
careful analysis of the “stuck” states (such as when an atomic tactic does not
match a goal) that can be reached, and we have some preliminary results on
this. Isolating failure points in stuck states will be important to help debugging.

The calculus we have presented here represents an idealized simple tactic
language. We believe that this is a natural starting point for the formal study of
tactic languages. However, there is clearly a diversity of concepts and constructs
which are used to guide proof search in real systems. For example, many proof
assistants allow goals to depend on each other via a meta-variable mechanism.
More generally, we can envision interdependencies between each of tactics, goals,

14

and proofs, and this leads us to speculate on the possibility of a “tactic cube”
(analogous to Barendregt’s Lambda Cube) of tactic languages.

On the practical side, the use of a generic tactic language offers hope that
we will be able to write tactics that can be ported between different systems.
We plan to investigate this and other issues with an implementation in Proof
General. In associated work at Edinburgh, a graphical tool is being developed
for displaying and navigating in Hiproofs. Finally, one of us is developing a sys-
tem which uses auto-generated formal proofs as evidence for the certification
of safety-critical software. In this regard, the explicitly structured proofs which
result from applications of tactics are likely to prove more useful than the un-
structured proofs which are generated by most present theorem provers.

Acknowledgements. The authors would like to thank Gordon Plotkin and Alan
Bundy for useful discussions.

References

1. Denney, E., Power, J., Tourlas, K.: Hiproofs: A hierarchical notion of proof tree.
In: Proceedings of Mathematical Foundations of Programing Semantics (MFPS).
Electronic Notes in Theoretical Computer Science (ENTCS), Elsevier (2005)

2. Oliveira, M.V.M., Cavalcanti, A.L.C., Woodcock, J.C.P.: ArcAngel: a tactic lan-
guage for refinement. Formal Aspects of Computing 15(1) (2003) 28–47

3. Coen, C.S., Tassi, E., Zacchiroli, S.: Tinycals: Step by step tacticals. Electr. Notes
Theor. Comput. Sci. 174(2) (2007) 125–142

4. Pollack, R.: On extensibility of proof checkers. In Dybjer, P., Nordström, B., Smith,
J.M., eds.: TYPES. Volume 996 of Lecture Notes in Computer Science., Springer
(1994) 140–161

5. Appel, A.W., Felty, A.P.: Dependent types ensure partial correctness of theorem
provers. Journal of Functional Programming 14 (January 2004) 3–19

6. Delahaye, D.: A tactic language for the system Coq. In: Logic for Programming and
Automated Reasoning: 7th International Conference, LPAR 2000, Reunion Island,
France, November 6-10, 2000. Volume Lecture Notes in Computer Science 1955.
(2000) 85

7. Kirchner, F.: Coq tacticals and PVS strategies: A small-step semantics. In et al.,
M.A., ed.: Design and Application of Strategies/Tactics in Higher Order Logics,
NASA (September 2003) 69–83

8. Wenzel, M.: Isar — a generic interpretative approach to readable formal proof doc-
uments. In Bertot, Y., Dowek, G., Hirschowitz, A., Paulin, C., Thery, L., eds.: The-
orem Proving in Higher Order Logics, 12th International Conference, TPHOLs’99.
LNCS 1690, Springer Verlag (1999)

9. Griffin, T.G.: Notational Definition and Top-down Refinement For Interactive Proof
Development Systems. PhD thesis, Cornell University (1988)

15

A Example Reductions

Here are the reductions for the examples from Section 4 in detail. We first show
how ALL id reduces applied to an empty goal list.

〈〉 ; ALL id
⇒ 〈〉 ; (id ⊗ ALL id) | 〈〉 (S-Def)
⇒ (〈〉 ; (id ⊗ ALL id) | (〈〉 ; 〈〉) (S-Alt)
⇒ 〈〉 ; 〈〉 (S-Sel-R)

We can use this to show how ID reduces for a goal of arity 2.

γ1 ⊗ γ2 ; ID
⇒∗ γ1 ⊗ γ2 ; (id ⊗ ALL id) | 〈〉 (S-Def)
⇒ (γ1 ⊗ γ2 ; id ⊗ ALL id) | (γ1 ⊗ γ2 ; 〈〉) (S-Alt)
⇒ ((γ1 ; id) ⊗ (γ2 ; ALL id)) | . . . (S-Split)
⇒ ((id ; γ1) ⊗ (γ2 ; (id ⊗ ALL id) | 〈〉)) | . . . (S-Id),(S-Def)
⇒∗ ((id ; γ1) ⊗ (γ2 ⊗ 〈〉 ; id ⊗ ALL id) | (γ2 ; 〈〉)) | . . . (S-Alt), γ2 ≡ γ2 ⊗ 〈〉
⇒∗ ((id ; γ1) ⊗ ((γ2 ; id) ⊗ (〈〉 ; ALL id) | . . .)) | . . . (S-Split)
⇒∗ ((id ; γ1) ⊗ ((id ; γ2) ⊗ (〈〉 ; 〈〉) | . . .)) | . . . (S-Id), see above
⇒∗ ((id ; γ1) ⊗ (id ; γ2)) | . . . (S-Join), γ2 ⊗ 〈〉 ≡ γ2, (S-Sel-R)
⇒∗ id ⊗ id ; γ1 ⊗ γ2 (S-Join), (S-Sel-L)

Finally, here is the full reduction from Section 4.

` A =⇒ (B =⇒ A) ; stripImp
⇒ ` A =⇒ (B =⇒ A) ; (impI ; REPEAT impI) | ID (S-Def)
⇒ (` A =⇒ (B =⇒ A) ; impI ; REPEAT impI) | (` A =⇒ (B =⇒ A) ; ID) (S-Alt)
⇒ ({A} ` B =⇒ A ; REPEAT impI) | . . . (S-Atomic), (S-Seq-L)
⇒ ({A} ` B =⇒ A ; (impI ; REPEAT impI) | ID) | . . . (S-Def)
⇒ ({A} ` B =⇒ A ; impI ; REPEAT impI) | ({A} ` B =⇒ A ; ID) | . . . (S-Alt)
⇒ ({A,B} ` A ; REPEAT impI) | . . . | . . . (S-Atomic), (S-Seq-L)
⇒ ({A,B} ` A ; ((impI ; REPEAT impI) | ID)) | . . . | . . . (S-Def)
⇒ ({A,B} ` A ; impI ; REPEAT impI) | ({A,B} ` A ; ID) | . . . | . . . (S-Alt)
⇒∗ (id ; {A,B} ` A) | . . . | . . . (S-Id), (S-Sel-R)
⇒∗ id ; {A,B} ` A (S-Sel-L), (S-Sel-L)

The last goal is easily proven with the atomic tactic ax.

16

